案例&资讯
案例&资讯
主页 › 案例&资讯资讯动态 › 查看详情

STT-MRAM成为存储器的新希望?

来源:宇芯科技有限公司 日期:2019-03-29 09:34:36

由于存储器制程比较简单,存储单元均可快速被复制,可以帮助先进制程工艺快速提升良率。所以,在过去很长的一段时间内,存储器都扮演着肯为先进制程工艺成为“吃螃蟹的人”。但是,伴随着先进制程工艺进入到65nm以后,相当一部分先进制程工艺的厂商已经积累了足够的经验,可以跳跃过存储器的验证,直接将先进制程用于逻辑产品。
 
与此同时,伴随着AI、物联网等领域的兴起,使得大数据的应用越来越广泛,这些新兴领域在不断催促着存储器追赶先进制程的脚步。目前,各大存储器大厂都在升级20nm制程,其中,DRAM、闪存和 SRAM 等传统内存仍然是市场上的主力技术。
 
在这个过程中,传统存储技术遇到了不少困难。其中,DRAM采用持续微缩的单元设计需要引入多重图案化技术,并最终在批量制造中需要采用EUV光刻技术,而我们都知道EUV技术现在还没有能够大规模应用。同样,平面 NAND也曾面临微缩的限制,最终采取垂直方向上的转变,也就是现在市场上非常流行的3D NAND技术。
 
传统存储技术面临着挑战,也催生了新技术的出现。在这种情况下,MRAM出现了。MRAM拥有静态随机存储器(SRAM)的高速读取写入能力,以及动态随机存储器(DRAM)的高集成度,而且基本上可以无限次地重复写入。也就是说,MRAM能够将存储器的密度与SRAM的速度相结合,同时具有非易失性和高功效。
 
MRAM技术始于1984年,当时Albert Fert和PeterGrünberg发现了GMR效应。 在20世纪80年代中期,支持者认为MRAM最终将超越竞争技术,成为占主导地位甚至是通用的存储器。1996年,自旋转移力矩被提了出来,这个发现使磁隧道结或自旋阀能够被自旋极化电流修改。基于这一点,摩托罗拉开始了他们的MRAM研究。一年后,摩托罗拉开发出一种256Kb的MRAM测试芯片。这使得MRAM技术开始走向产品化,随后在2002年,摩托罗拉被授予 Toggle专利。这也是第一代MRAM,即Toggle MRAM。但是,由于第一代MRAM在先进的工艺节点下耗能太高,使得MRAM的发展遇到瓶颈。
 
2004年,摩托罗拉将其半导体业务独立出来,成立了飞思卡尔半导体。2006年7月,飞思卡尔开始销售世界上第一款商用MRAM芯片。这些芯片的容量低至4Mbit,价格定在25美元。与此同时,MRAM已经开始受到了其他厂商的关注,英飞凌、台积电、东芝、瑞萨等等企业也开始了MRAM方面的研究。MRAM技术也得以向第二代发展,目前,主流的研究主要是TAS-MRAM和STT-MRAM。
 
其中之一,第二代MRAM器件使用自旋极化电流来切换电子自旋,也就是STT-MRAM。2005年,瑞萨科技与Grandis合作开发了65nm的STT-MRAM。与MRAM相比,STT-MRAM器件更快,更高效且更容易缩小。与传统内存技术相比,STT-MRAM器件不仅能兼顾MRAM的性能,还能够满足低电流的同时并降低成本。
 
基于以上优势,STT-MRAM被视为是可以挑战DRAM和SRAM的高性能存储器,并有可能成为领先的存储技术。尤其是在40nm以下工艺节点上,NOR开始暴露出很多问题,STT-MRAM被寄予厚望。市场认为,STT-MRAM不仅在40nm节点下可以被利用,甚至可以扩展到10nm以下应用。更值得注意的是,STT-MRAM可基于现有的CMOS制造技术和工艺发展,在技术上进行接力的难度相对较小,从而,可以直接挑战闪存的低成本。
 
理想很丰满,现实很骨感。随着技术规模的缩小,STT-MRAM遭受严重的工艺变化和热波动,这极大地降低了STT-MRAM的性能和稳定性。对于大多数商业应用来说,STT-MRAM的道路依旧充满艰难险阻。
 
从结构上看,STT-MRAM存储单元的核心是一个MTJ,也就是STT-MRAM是通过MTJ来存储数据。通常情况下,MTJ是由两层不同厚度的铁磁层及一层几个纳米厚的非磁性隔离层组成,它是是通过自旋电流实现信息写入的。写入信息时需要较大的电流产生磁场使 MTJ 自由层磁矩发生反转。随着存储单元的尺寸减小,需要更大的自由层磁矩反转磁场,因此也需要更大的电流。但是,大电流不仅增加了功耗,也使得变换速度减慢,限制了存储单元写入信息的速度。
 
在CSTIC 2019上,就有专家提及,目前STT-MRAM的挑战主要存在于需要更大的写入电流、MTJ的缩放,以及如何降低误码率,这三者之间的平衡。
 
 
 
挑战同时代表着机遇,STT-MRAM对各大厂商的吸引力不减。2008年,飞思卡尔将其MRAM业务独立出来,成立了EverSpin Technologies。2014年,Everspin与Global Foundries合作,在300毫米晶圆上生产面内和垂直MTJ ST-MRAM,采用40纳米和28纳米节点工艺。2017年,Everspin号称是唯一出货商用MRAM产品的公司,由此也可以看出Everspin在此方面的优势。2018年,Everspin还是与Global Foundries合作,推出了全球首个28 nm 1 Gb STT-MRAM客户样品。但我们都知道,Global Foundries已经停止了7nm以下先进制程的投入,着力14/12纳米FinFET。而市场上对 STT-MRAM的预期却没有止步于12nm。接下来,EverSpin将会选择与哪家代工厂合作?
 
再次回到十年前,海力士半导体和Grandis的合作伙伴关系也始于2008年,他们之间的合作意在探索STT-MRAM技术的商业开发。
 
而在上文当中,我们曾叙述,瑞萨也曾与Grandis展开STT-MRAM相关合作,而海力士的合作伙伴同样也是选择了Grandis。Grandis是否能够凭借新兴技术在存储领域获得一席之地?据悉,Grandis成立于2002年,发明了第一个基于磁隧道结的自旋转移扭矩薄膜结构,并迅速成为STT-RAM领域的领导者。2011年,Grandis被三星电子有限公司收购,并合并到三星的内存业务中。三星也因此开始踏足STT-MRAM。2018年,三星电子的晶圆代工论坛期间,公司重申了其在2018年开始生产STT-MRAM芯片的目标。三星表示真正的STT-MRAM大规模生产将始于2019年。
 
除了Grandis,IBM也是STT-MRAM的先驱,与英飞凌和三星合作。2016年,IBM和三星研究人员就展示了11纳米级STT-MRAM。2018年,IBM展示了他们的FlashCore NVMe SSD,它提供了19 TB的闪存存储,并使用Everspin的5-256Mb STT-MRAM芯片进行写入缓存和日志记录。
 
除上文提到的Global Foundries和三星外,根据CSTIC 2019期间,Yole的调查报告显示,包括台积电、英特尔、联电在内的顶级晶圆厂都准备好了将28/22nm嵌入式STT-MRAM用于微控制器。
 
 
 
2019年2月,在英国国际固态电路会议上,英特尔透露STT-MRAM技术已准备好进行批量生产。据EE Times报道,该公司预计将使用22nm FinFET工艺来制造存储芯片。
 
2000年,台积电就和台工研院合作投入MRAM等次世代内存研发。2011年,高通公司在VLSI电路研讨会上也展示了采用台积电 45纳米LP技术制造的1 Mbit嵌入式STT-MRAM 。由于成本的原因,台积电放弃过MRAM。但是,在2017年中,台积电重返内存市场瞄准MRAM和RRAM。据DIGITIMES预测,2019年台积电的STT-MRAM极有可能量产出货。
 
同样,2018年,联电和Avalanche Technology宣布,他们已经联合开发和生产28nm MRAM,以取代嵌入式闪存。联电还将通过Avalanche Technology Inc.的许可向其他公司提供此技术。
 
各大晶圆厂纷纷在2019年布局STT-MRAM量产计划,并开始逐渐走向28nm以下的产品。但大陆方面还在40nm以上的STT-MRAM挣扎,并没有太大的优势。STT-MRAM的出现,使得国际厂商将目光从NOR上转移。同样,在前不久结束的semicon 2019存储器论坛上,也有一种声音出现:NOR技术想要全面取代STT-MRAM还需要一段时间,这个时间差,为大陆方面发展NOR提供了机会。

关键词:EVERSPIN
上一篇:台积电重返内存市场 瞄准MRAM和RRAM


宇芯有限公司自成立以来,我们专注于代理国内外各大知名品牌的半导体元器件,代理品牌有NETSOL、JSC、everspin、来杨Lyontek、ISSI、CYPRESS等多个品牌总代理资质,主要产品线为sram、mram、psram等其他存储器芯片,致力于为客户提供具有竞争优势的产品,是一家专业提供存储方案解决商。